
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, Jul. 2021 2476
Copyright ⓒ 2021 KSII

http://doi.org/10.3837/tiis.2021.07.010 ISSN : 1976-7277

UML diagram-driven test scenarios
generation based on the temporal graph

grammar

Zhan Shi1*, Xiaoqin Zeng2, Tingting Zhang3,4, Lei Han1 and Ying Qian1
1 Institute of Computer Engineering, NanJing Institute of Technology,Nanjing, China

[e-mail:smomac@163.com]
2 Institute of Intelligence Science and Technology, Hohai University,Nanjing, China

[e-mail:xzeng@hhu.edu.cn]
3 PLA Army Engineering University, Nanjing, China

4 Southeast University, Nanjing, China
*Corresponding author: Zhan Shi

Received February 23, 2021; revised May 31, 2021; accepted June 24, 2021;

published July 31, 2021

Abstract

Model-based software architecture verification and test scenarios generation are becoming
more and more important in the software industry. Based on the existing temporal graph
grammar, this paper proposes a new formalization method of the context-sensitive graph
grammar for aiming at UML activity diagrams, which is called the UML Activity Graph
Grammar, or UAGG. In the UAGG, there are new definitions and parsing algorithms. The
proposed mechanisms are able to not only check the structural correctness of the UML activity
diagram but also automatically generate the test scenario according to user constraints. Finally,
a case study is discussed to illustrate how the UAGG and its algorithms work.

Keywords: Graph grammar, Parsing algorithm, TEGG, UML

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2477

1. Introduction

As the complexity and scale of software and hardware systems increase in many fields, such
as the IoT(Internet of Things)[1-2], the finance[3-4] etc., the concurrency of these systems is
becoming more and more important. It makes the software architecture essential for describing
and testing the software system. There are multiple types of model views to describe the
software architecture.

At present, many Architecture Description Languages(ADLs) have been proposed[5-10].
Although the ADLs are specialized formal languages supporting modeling and reasoning on
software architectures, their popularity and usage by practitioner is very low[11]. While, the
Unified Modelling Language (UML) [12] is a common specification and the standard
modeling language[13]. The UML activity diagram is one of UML standard models, which is
very popular for describing software requirements and the dynamic behavior of the software
systems[14].

Since the formal method is the application of mathematical logic to describe the model of
the software system, it has very high reliability and accuracy. Therefore, many studies use the
method of a formal theorem to verify and check the correctness of UML activity diagrams[15-
16]. While, a number of researchers use Petri net method to describe and verify the UML
activity diagram. Störrle[17] mapped various elements of the UML activity diagram into
executable Petri nets. Heuer et al.[18] extended the dynamic syntax and semantics of the Petri
net, and based on this Petri net, the activity diagram was formally described. Tariq et.al[19]
proposed an approach for formal analysis and simulation of the UML behavioral models using
Coloured Petri Nets(CPN).

At the same time software testing is closely related to the software development process.
Whether it is traditional software testing methods or automated software testing methods,
generating test scenarios is one of the most critical issues. At present, many researchers have
used UML modeling to represent the system and to test the software. Researchers have done
a lot of research on test scenarios generation based on UML models. Yan et al.[20] proposed
a test scenarios generation method based on UML sequence diagram models. In the literature
[21], there is an approach to generate the test scenarios using UML use case diagrams. Among
these studies [22]-[25], UML state diagrams are used, and algorithms for generating test
scenarios are also proposed. In the process of generating test scenarios, it is also meaningful
research how to use optimization methods[26-27] to improve efficiency.

 In fact, with the wide application of visual graph languages such as UML, BPMN, and
control flowcharts, etc., a framework for formal definition and analysis of visual languages
plays an increasingly important role. Obviously, for this definition and analysis of visual
languages, graph grammars[28] provide an intuitive but formal method. Just as string grammars
are very important to string languages, graph grammars are also an indispensable theoretical
tool for visual languages[29].

Nowadays, there are many research results on graphic grammar and its application. Rekers
and Schürr[30] proposed a context-sensitive graph grammar in 1997. This graph grammar is
called Layered Graph Grammar (LGG). Then, based on the LGG, Zhang et al.[31] proposed
another context-sensitive graph grammar. This grammar is called Reserved Graph Grammar
(RGG), which not only introduces a marking mechanism in the graph grammar to distinguish
different edges, but also proposes selection conditions to restrict the production. The RGG's[32]
application range is wider. There are Visual XML Schemas[33] and Generic Visual Language
Generation Environments[34].

2478 Shi et al.: UML diagram-driven test scenarios generation based on the temporal graph grammar

Zeng et al.[35] proposed a context-sensitive Edge-based Graph Grammar (EGG). Based on
the EGG, a new attempt of transformation between BPMN and BPEL[36] was provided. For
traditional graphic grammars, although they can verify the correctness of the graph structure,
they cannot analyze and process temporal semantics. However, graphs with temporal
semantics are widely used in many fields. In order to expand the application range of the graph
grammar, an attempt of introducing temporal mechanism into graph grammar was proposed.
This new graph grammar was called Temporal Edge-based Graph Grammar (TEGG)[37]. So,
we will extend the TEGG, make it more convenient to formally verify the UML activity
diagram and further generate test scenarios.

Based on the TEGG, this paper proposes a new context-sensitive graph grammar for UML
activity diagrams, called UML Activity Graph Grammar or UAGG in short. In the UAGG,
formal definitions are introduced for the characteristics of UML activity diagrams. Similarly,
two types of productions are also provided. Then, new algorithms are designed to verify UML
activity diagrams and generate test scenarios. Finally, there is a case study to explain how the
proposed algorithms work.

The rest of the paper is organized as follows. Firstly, Section 2 briefly introduces the basic
concepts of the TEGG. Section 3 elaborates the formal definitions of the UAGG with the
introduction of new mechanisms, such as an attribute set, new E-productions, and so on. Based
on the UAGG, Section 4 provides steps and algorithms to realize the verification of UML
activity diagrams and the generation of test scenarios. Section 5 illustrates a case study on a
UML activity diagram. Finally, Section 6 concludes the whole paper.

2. Preliminaries
The TEGG mainly analyzes temporal semantics. In order to better understand the TEGG, the
basic concepts are briefly introduced below.
Definition 2.1 A node n based on a label set

nL can be denoted as (,)n lab Natts≡ , and there
are the following conditions:

·
nL can be expressed as

nL T T= U . T represents a label set of
TN , and T represents a label

set of
NN , while

TN represents a set of terminal nodes and
NN represents a set of non-terminal

nodes;
·

nlab L∈ , representing the label of n;
· Natts is a set of attributes owned by node n.

Definition 2.2 An edge e based on a label set
eL can be denoted as (, , ,)s te lab n n Eatts≡ , and

there are the following conditions:
· eL is a set of edge labels;
· elab L∈ , representing the label of e;
·

sn is a node defined in Definition 2.1, meaning the source node of e;
·

tn , is a node defined in Definition 2.1, representing the target node of e;
· Eatts is a set of attributes owned by edge e, while Eatts Eka Eka= U .
Usually, there are three graph operations. The first type of graph operation is called L-

application, also called deduction. The second one is called R-application, also called
reduction. Then, the last one is called T-application. There is the literature [37] for more details
about the TEGG.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2479

3. Formalism of the UAGG based on the TEGG
UML activity diagrams are mainly used to describe the workflow and concurrent behavior of
the system and show the various sequential activities performed by all participants. Although
activity diagrams have an intuitive and straightforward description, it cannot guarantee the
correctness and reliability of the established model. It is more challenging to provide a useful
basis for future software testing. In order to solve these problems, there are the formal
definitions of the UAGG based on the TEGG.
Definition 3.1 A node n based on a label set

nL can be denoted as
(, , , ,)n id name lab type Natts≡ , and there are the following conditions:

·
nL and

nlab L∈ are the same as those defined in Definition 2.1;
· {0,1, 2,... }id k∈ , representing the identification of the node n to distinguish different nodes;
·name, representing the name of the node n;
·type, indicating which categories this node belongs to, while

{ , , , , , , , , }type Initial Final Activity ComponentActivity Fork Join Branch Merge Object= . These values
represent an initial activity node, a final activity node, a basic activity node, a component
activity node, a concurrency fork node, a concurrency join node, a conditional fork node, a
conditional join node and an object node in UML activity diagrams respectively;

· Natts is a set of attributes owned by node n, which includes key temporal attributes and non-key
attributes for UML activity diagrams.

In order to show more vividly the node status corresponding to different values of the
temporal attribute in a node, the following notations are used. In addition, each node also has
non-key attributes, including Test_Path, Final_Weight, and Rand_Weight. The Test_Path
attribute is mainly used to save the generated test path. The Final_Weight and Rand_Weight
attributes are used to save the two weights of the node, which will be described in detail later.

A node with
waiting status

A node with
completed status

S S

Fig. 1. Nodes with waiting and completed statuses

Definition 3.2 An edge e based on a label set

eL can be denoted as
(, , , , , ,)s te id name lab type n n Eatts≡ , and there are the following conditions:

·
eL , elab L∈ , and Eatts are the same as those defined in Definition 2.2;

· {0,1, 2,... }id k∈ , representing the identification of the edge e to distinguish different edges;
·name, representing the name of the edge e;
· type, indicating which categories this edge belongs to, while { }type Controlflow= . The value

represents a control edge in UML activity diagrams;
· sn and tn are nodes defined in Definition 3.1, representing the source and target node of

e respectively.
Definition 3.3 A uml-activity graph UAG based on a label set L can be denoted as

(, , , ,)UAG N E l p q≡ , , and there are the following conditions:
·N is a set of nodes defined in Definition 3.1;

2480 Shi et al.: UML diagram-driven test scenarios generation based on the temporal graph grammar

·E is a set of edges defined in Definition 3.2;
· :l N E L→U is a mapping from N and E to L, and L can be expressed as

n eL L L= U ;
· :p E N→ and :q E N→ are mappings from E to N, indicating the source and target node

of an edge.
In the UAGG, the concepts of a sub-graph, two isomorphic graphs, redexes, a T-production,

and the graph operations R-application and T-application are similar to the corresponding
concepts of the TEGG. Then, the introduction of these concepts will not be repeated. For UML
activity diagrams, the T-productions shown in Fig. 2.

T -productions

B.

ProductionsNo. Con

{m+1,…,n}
*

{0,1,…,m}*

Fun

{m+1,…,n}
*

{0,1,…,m}*

C.
{m+1,…,n}

*
{m+1,…,n}

*

**

A.

D.
{0,1,…,m}*

{0,1,…,m}*

E.
{0,1,…,m}*

{0,1,…,m}*

* *

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

{0,1,…,m}* {0,1,…,m}*

Fig. 2. A group of T-productions defined for the UML activity diagrams

In order to check the structural correctness of UML activity diagrams and reduce concurrent

processes in these diagrams, the concept of a new E-production in the UAGG is given as
follows.
Definition 3.4 An E-production

Ep is the expression L RUAG UAG⇔ , denoted as (LUAG , RUAG ,
Con, Fun), where

· LUAG and RUAG are uml-activity graphs with dangling edges;

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2481

· (. .) ({0,1,2,...})L RUAG M UAG M M= ∧ ⊂ ;
·Con is conditions which can be satisfied;
·Fun is a group of functions that are executed when the Con can be satisfied and this

production is used.
According to the above definition, the E-productions for UML activity diagram analysis are

shown in Fig. 3.

E -productions

2.

ProductionsNo. Con Fun

4.

3.

1. 1 2S

1 2S 1 2T.x

11 2 2S SS S

11 2 2
T.and

S

S

S T.and

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

11 2 2
T.xor

S

S

S T.xor5.

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

11 2 2T.xor SS T.xor

co
ndFinal_Weight

Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

6.

Fig. 3. A group of E-productions defined for the UML activity diagrams

4. A method of UML activity diagrams verification and test scenarios
generation based on the UAGG

4.1 Steps of UML activity diagrams verification and test scenarios generation
In order to formally verify UML activity diagrams and further generate test scenarios, this
section proposes an algorithm for this purpose based on the UAGG. The main steps of the
algorithm are designed as follows, which not only check the structural aspect but also generate
test scenarios of UML activity diagrams. The pseudo-codes of the algorithm are shown in Fig.
4.

2482 Shi et al.: UML diagram-driven test scenarios generation based on the temporal graph grammar

Graph parsing (UMLActivityDiagram g, Productions P, Constraints userConstraints)
{
 1: G←initialize(g);
 2: if()
 3: {
 4: if (graphStructureParsing(G, P.Eprodutions, FALSE) ==)
 5: {
 6: result = generateTestScenarios(G, P, userConstraints);
 7: return result;
 8: }
 9: else
 10: return NULL;
 11: }
}

Algorithm 1. Pseudo-codes for the parsing algorithm

Fig. 4. A new parsing algorithm

Step 1, initializing. This step mainly transforms a given UML activity diagram g into a host

graph of the UAGG, which is done by the function initialize(UMLActivityDiagram g).
Step 2, verifying the structural correctness of the UAGG host graph. This step is mainly

implemented by the function graphStructureParsing() which has three parameters. The first
parameter represents the UAGG graph G, the second one represents the UAGG E-productions,
and the last one indicates whether to enable the conditions of E-productions in Fig. 3. If the
structure of G is correct, jump to step 3. Otherwise, return the NULL and end the algorithm.
A further description of this function will be introduced in Section 4.2.

Step 3, generating test scenarios with the UAGG. This step is mainly implemented by the
function generateTestScenarios(), which also has three parameters. The first parameter
represents the UAGG grammar graph G, the second one represents the productions including
E-productions and T-productions, and the last one represents the user constraints on the
generation of test scenarios. A further description of this function will be introduced in Section
4.3.

4.2 Steps of UML activity diagrams’ structure verification
A UAGG host graph of a UML activity model can be obtained through the first step in Section
4.1. In the algorithm provided in Fig. 4, the function graphStructureParsing() completes the
function similar to the traditional graph parsing algorithm. It is designed to check the given
graph's structure correctness through R-applications with E-productions presented in Fig. 3.
The pseudo-codes of the function graphStructureParsing() are provided in Fig. 5.

The function graphStructureParsing() is to reduce the UAGG host graph g according to
the E-productions ePros. When selecting the E-production, it will combine the parameter
isCondition to determine whether to enable the conditions of this E-production in Fig. 3.

In fact, the function findRedex (Graph g, Productions pros, Boolean isCondition) is mainly
used to realize the process of finding redexes in the host graph g. If the parameter isCondition
is true, then additional conditions of the productions need to be met when selecting and
determining the production. And if the parameter is Condition is false, then there is no need to
satisfy its conditions when selecting and determining the production additionally.

There are two stacks GraphStack and ERedexStack in the function
graphStructureParsing(). The GraphStack is used to store graphs, while the ERedexStack is
used to store corresponding redexes of the graphs respectively.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2483

Alogrithm 2. Pseudo-codes for the function graphStructureParsing()
Graph graphStructureParsing(Graph g, E-Productions ePros, Boolean isCondition)
{
 1: if()
 2: {
 3: while (g !=)
 4: {
 5: push(MARK, ERedexStack);
 6: for all
 7: {
 8: EredexSet = findRedex (g, ePros, isCondition);
 9: for all
 10: push(eredex, ERedexStack);
 11: }
 12: eredex Θ pop(ERedexStack);
 13: while (eredex == MARK)
 14: {
 15: g Θ pop(GraphStack);
 16: eredex Θ pop(ERedexStack);
 17: if (eredex==NULL)
 18: {
 19: if(isCondition== FALSE)
 20: return NULL;
 21: else
 22: return g;
 23: }
 24: }
 25: push (g, GraphStack);
 26: g = RApplication (g, p, eredex);
 27: }
 28: return g;
 29: }
}

Fig. 5. The function of graphStructureParsing()

4.3 Steps of test scenarios generation

There is a critical step to extract test scenarios from UML activity diagrams in test case
generation. However, the concurrency modules in the activity diagram make the problem of
extracting the basic test scenarios more complicated. The concurrency module of UML
activity diagrams always starts at the concurrent fork node. It ends at the concurrent join node,
which meets the characteristic of a single node as input or output.

Therefore, based on the UAGG, this paper proposes the algorithm generateTestScenarios()
which will analyze the UAGG host graph according to the constraint conditions of the
productions and users to generate the test scenarios. The specific steps of the algorithm are as
follows:

Step 1, making pretreatment for a given graph of the UAGG. Firstly, the primary
implementation is to find all the concurrent modules in the UAGG host graph and then assign
an initial value to the state of the first concurrent fork node of each outermost concurrent
module.

Step 2, assign a random value to the Rand_Weight attribute of each node in each concurrent
module. Then, for all concurrent modules, use the graphTemporalParsing() function with T-
productions, T-applications and other operations to calculate the Final_Weight attribute value
of each node. Thus, the intermediate graph is generated.

Step 3, further using E-productions to reduce the intermediate graph generated above until
all the concurrent modules are reduced to the corresponding single node.

Step 4, further executing the graphStructureParsing() function with E-productions to
generate a test scenario.

Step 5, determining whether the user constraints are met. If the user has no additional
constraints, this algorithm ends and the test scenario is obtained. If the user has additional
condition constraints, check whether the test scenario generated in Step 4 meets the conditions.
When the conditions are met, the algorithm ends. When the conditions are not met, go to Step

2484 Shi et al.: UML diagram-driven test scenarios generation based on the temporal graph grammar

2 and continue execution.
The above process can be expressed with pseudo-codes, as shown in the following figure.

generateTestScenarios(Graph g, Productions ps, Constraints userConstraints)
{
 1: Boolean isCycle=TRUE;
 2: finalTestScen=NULL;
 3: if(g !=NULL && ps != NULL)
 4: {
 5: List allConcurrentModel = findAllConcurrentModel(g);
 6: if(allConcurrentModel != NULL)
 7: {
 8: g = initializeFirstNode(g, allConcurrentModel);
 9: while(isCycle)
 10: {
 11: gra = initializeRandWeightOfNode(g, allConcurrentModel);
 12: gra = graphTemporalParsing(gra, ps);
 13: gra = graphStructureParsing(gra, ps.Eproductions, 1);
 14: basicTestScen = graphStructureParsing(gra, ps.Eproductions, 0);
 15: if(isSatisfyConstraints(basicTestScen, userConstraints) == FALSE)
 16: {
 17: isCycle=TRUE;
 18: }
 19: else
 20: {
 21: isCycle=FALSE ;
 22: finalTestScen = basicTestScen;
 23: }
 24: }
 25: }
 26: else
 27: {
 28: finalTestScen = graphStructureParsing(gra, ps.Eproductions, 0);
 29: }
 30: return finalTestScen ;
 31: }
}

Alogrithm 3. Pseudo-codes for generating test scenario

Fig. 6. The function of generateTestScenarios()

4.4 Computational complexity

The computational complexity of the algorithm in Fig. 4 is a critical issue. While, it is analyzed
in this section.
Theorem 4.1. For a given UML activity diagram, the time complexity of the algorithm in Fig.
4 is 2 2(2 () (!))

!
m n n mpsO ps n n n

m
⋅⋅ + ⋅ ⋅ ⋅ , where n is the numbers of nodes in a host graph of the

UAGG, ps is the number of productions, and m is the maximum number of nodes among all
productions’ right graphs.
Proof. Assuming 1k , 2k , and 3k are time complexity of functions initialize(),
graphStructureParsing(), and generateTestScenarios() respectively. According to the
algorithm steps, its time complexity k can be calculated by the following equation:

1 2 3k k k k= + +
 It is sure that the complexity of the function initialize() is O(n). In addition, for the function
graphStructureParsing(), assuming 1l is the maximal iterations number of the lines 3–27, 2l
is that of the lines 6-11, 3l is that of the lines 9-10, and 4l is that of the lines 13-24. Then,

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2485

assuming 4k and 5k are the time complexities of the function findRedex() and RApplication()
respectively. So, the complexity of function graphStructureParsing() is as follows[37]:

2 1 2 4 3 4 5((()))

(() (!))
!

n n m

k O l l k l l k
psO n n
m

= ⋅ ⋅ + + +

= ⋅ ⋅

For the function generateTestScenarios(), assuming 5l is the maximal iterations number of

the lines 9 – 24, 6k , 7k , 8k , and 9k are the time complexities of the function
findAllConcurrentModel(), initializeFirstNode(), initializeRandWeightOfNode() and
graphTemporalParsing() respectively. In order to find all concurrent subgraphs, it is
necessary to traverse all nodes in the UAGG graph. Therefore, the time complexity of
findAllConcurrentModel() is O(n+e), while e represents the edges in the UAGG host graph.
The function initializeFirstNode() is used to initialize the first node of the concurrent module,
so 7 ()k O n e≤ + . Similarly, 8 ()k O n e≤ + . For the function graphTemporalParsing(), there

is 2 2 1
9 ()mk O ps n ⋅ +≤ ⋅ according to the reference [37]. Obviously, for the obtained test

scenario containing n nodes, the time complexity of the function isSatisfyConstraints() is O(n),
while 2

5 (1)l n n n n≤ ⋅ − = − . So, the complexity of the function generateTestScenarios() is:
3 6 7 5 8 9 2

2 2

((2))

(() (!))
!

m n n m

k O k k l k k k n
psO ps n n n
m

⋅

= + + ⋅ + + ⋅ +

= ⋅ + ⋅ ⋅

Combined with the above discussion, the time complexity of the algorithm is the
following:

1 2 3

2 2(2 () (!))
!

m n n m

k k k k
psO ps n n n
m

⋅

= + +

= ⋅ + ⋅ ⋅ ⋅

5. Case study and Comparison with related work
This section introduces a process model built by UML activity diagrams, and illustrates how
this model is verified and test scenarios are generated using the steps presented in Section 4.1.

5.1 Case study

Fig. 7 shows the process of adding product information to the supermarket management
system after the administrator logs in. There are ten activity nodes and six gateway nodes.
Besides, this process includes two concurrent models.

Shopkeeper login
e-commerce
management
system

Verify
account And
password

Add new a
kind of
goods

Add goods
name

Add goods
price

Add goods
stock

Select goods
type

Select
goods brand

Add goods
specifications

submit

Fork 1

Branch 1 Merge 1

Fork 2 Join 1,
Join 2

Fig. 7. A business process described by the UML activity diagram

2486 Shi et al.: UML diagram-driven test scenarios generation based on the temporal graph grammar

According to the algorithm introduced in Section 4.1, it can analyze this diagram as follows.
Step 1, executing the first steps, namely initialization. Through this step, we can get the

host UAGG graph g shown in Fig. 8.

Name：1
Type：Activity

Lab：T

Name：2
Type：Activity

Lab：T

Name：3
Type：Branch

Lab：XOR

Name：6
Type：Activity

Lab：T

Name：4
Type：Activity

Lab：T

Name：7
Type：Activity

Lab：T

Name：9
Type：Activity

Lab：T

Name：8
Type：Activity

Lab：T

Name：15
Type：Activity

Lab：T

Name：5
Type：Fork
Lab：AND

Name：10
Type：Fork
Lab：AND

Name：11
Type：Activity

Lab：T

Name：12
Type：Activity

Lab：T

Name：13
Type：Join
Lab：AND

Name：14
Type：Join
Lab：AND

Name：16
Type：Merge
Lab：XOR

Fig. 8. A UAGG host graph g is corresponding to Fig. 7.

The graph g describes the node name with numbers given to each activity. The two columns

in the following table are Activity Name and Node Name respectively. The Activity Name
represents the name of the activity in Fig. 7, and the Node Name indicates the node in the
graph g corresponding to the activity.

Table 1. The UAGG graph of adding product information activity diagram

Activity Name Node Name
Shopkeeper login e-commerce

management system 1

Verify account and passsword 2

Branch 1 3

Add a new kind of goods 4

Activity Name Node Name

Fork 1 5

Add goods name 6

Add goods price 7

Add goods stock 8

Activity Name Node Name

Select goods type 9

Fork 2 10

Select goods brand 11

Add goods specifications 12

Activity Name Node Name

Join 1 13

Join 2 14

Submit 15

Merge 1 16

Step 2, this step is the process of structural analysis of the above host graph. That is to verify
whether the structure is correct by executing the function graphStructureParsing() based on
E-productions. If the host graph's structure is correct, jump to Step 3. Otherwise, return the
error message and end the algorithm.

Step 3, this step is to generate test scenarios. It involves several processes described in
Section 4.3, so we can further introduce this step as follows.

Step 3.1, making pretreatment for a given graph of the UAGG. Firstly, there are two
concurrent modules in the graph g founded by the function findAllConcurrentModel (Graph
g). The first fork node of the outermost concurrent module of these two modules is marked
by the red dotted line box in Fig. 9, noted as Node 5. Then, assign an initial value to the state
of the Node 5.

Step 3.2, assigning a random value to the Rand_Weight attribute of each node in these two
concurrent models, and assigning the value of the Rand_weight attribute in the Node 5 to its
Final_weight attribute as shown in Fig. 9. Then, for all concurrent models in this graph, use
the graphTemporalParsing() function with T-productions, T-applications and other
operations to calculate the Final_Weight attribute value of each node. So, the intermediate
graph is generated.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2487

In the following content, j
iC will be used to represent each redex, where j represents the

number of the intermediate graph containing the redex, and i represents the number of the
corresponding redex.

c

Name：5
Lab：AND

Rand_Weight：90
Final_Weight：90

Name：6
Lab：T

Rand_Weight：110
Final_Weight：

Name：7
Lab：T

Rand_Weight：500
Final_Weight：

Name：8
Lab：T

Rand_Weight：410
Final_Weight：

Name：9
Lab：T

Rand_Weight：25
Final_Weight：

Name：10
Lab：AND

Rand_Weight：160
Final_Weight：

Name：11
Lab：T

Rand_Weight：260
Final_Weight：

Name：12
Lab：T

Rand_Weight：70
Final_Weight：

Name：13
Lab：AND

Rand_Weight：480
Final_Weight：

Name：14
Lab：AND

Rand_Weight：305
Final_Weight：

Name：15
Lab：T

Name：16
Lab：XOR

c

Name：1
Lab：T

Name：2
Lab：T

Name：3
Lab：XOR

Name：4
Lab：T

Fig. 9. An intermediate graph

 Firstly, the function graphTemporalParsing() will search for all redexes in the host graph
according to the T-productions given in Fig. 2. In this process, because the condition of T-
production A is met, the redex 1

1C will be selected in Fig. 9 and replaced by T-application
with the T-production A. At the same time, the Fun function of the T-production A will also
be executed. So, Fig. 10 can be obtained.

c

Name：5
Lab：AND

Rand_Weight：90
Final_Weight：90

Name：6
Lab：T

Rand_Weight：110
Final_Weight：

Name：7
Lab：T

Rand_Weight：500
Final_Weight：

Name：8
Lab：T

Rand_Weight：410
Final_Weight：

Name：9
Lab：T

Rand_Weight：25
Final_Weight：

Name：10
Lab：AND

Rand_Weight：160
Final_Weight：

Name：11
Lab：T

Rand_Weight：260
Final_Weight：

Name：12
Lab：T

Rand_Weight：70
Final_Weight：

Name：13
Lab：AND

Rand_Weight：480
Final_Weight：

Name：14
Lab：AND

Rand_Weight：305
Final_Weight：

Name：15
Lab：T

Name：16
Lab：XOR

c

Name：1
Lab：T

Name：2
Lab：T

Name：3
Lab：XOR

Name：4
Lab：T

Fig. 10. An intermediate graph after using T-production A

Secondly, the function continues to search for redexes based on Fig. 10. Since conditions

of the T-production B are satisfied, the redexes 2
1C , 2

2C , 2
3C , and 2

4C are selected and
replaced by T-application with the T-production B. Then, its Fun function is activated and

2488 Shi et al.: UML diagram-driven test scenarios generation based on the temporal graph grammar

executed, which calculates the value of Final_weight of these redexes. Therefore, the
Final_Weight attribute value of Node 6, 7, 8, and 9 is equal to the final_weight attribute value
of Node 5 plus the Rand_weight attribute value of these nodes themselves respectively. So,
Fig. 11 can be obtained.

c

Name：5
Lab：AND

Rand_Weight：90
Final_Weight：90

Name：6
Lab：T

Rand_Weight：110
Final_Weight：200

Name：7
Lab：T

Rand_Weight：500
Final_Weight：590

Name：8
Lab：T

Rand_Weight：410
Final_Weight：500

Name：9
Lab：T

Rand_Weight：25
Final_Weight：115

Name：10
Lab：AND

Rand_Weight：160
Final_Weight：

Name：11
Lab：T

Rand_Weight：260
Final_Weight：

Name：12
Lab：T

Rand_Weight：70
Final_Weight：

Name：13
Lab：AND

Rand_Weight：480
Final_Weight：

Name：14
Lab：AND

Rand_Weight：305
Final_Weight：

Name：15
Lab：T

Name：16
Lab：XOR

c

Name：1
Lab：T

Name：2
Lab：T

Name：3
Lab：XOR

Name：4
Lab：T

c

c

c

c

Fig. 11. An intermediate graph after using T-production B

Then, the above process is repeatedly executed until the attribute Final_Weight of all nodes

in the concurrent modules of the graph can be calculated. So, Fig. 12 can be obtained.

c

Name：5
Lab：AND

Rand_Weight：90
Final_Weight：90

Name：6
Lab：T

Rand_Weight：110
Final_Weight：200

Name：7
Lab：T

Rand_Weight：500
Final_Weight：590

Name：8
Lab：T

Rand_Weight：410
Final_Weight：500

Name：9
Lab：T

Rand_Weight：25
Final_Weight：115

Name：10
Lab：AND

Rand_Weight：160
Final_Weight：275

Name：11
Lab：T

Rand_Weight：260
Final_Weight：535

Name：12
Lab：T

Rand_Weight：70
Final_Weight：345

Name：13
Lab：AND

Rand_Weight：480
Final_Weight：1015

Name：14
Lab：AND

Rand_Weight：305
Final_Weight：1320

Name：15
Lab：T

Name：16
Lab：XOR

c

Name：1
Lab：T

Name：2
Lab：T

Name：3
Lab：XOR

Name：4
Lab：T

c

c

c

c

c

c

c

c

c

Fig. 12. An intermediate graph

Step 3.3, in this step the main realization uses E-productions to reduce the intermediate

graph generated in the above Step 3.2, until the concurrent modules are reduced to a single
node. More detailed analysis processes are given below.

 (1) The function graphStructureParsing() first tries to search for all redexes in Fig. 12
with the E-productions given in Fig. 3. Considering Con of the E-production 2, it can be used
to perform R-application operations, so that the value of nodes’ Lab in the concurrent modules

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2489

can be changed from “T” to “S”. Then, Fig. 13(a) can be obtained.
 Considering Con of the E-production 4, the redex 5

1C is selected and replaced by R-
application, which is shown in Fig. 13(a). Its Fun is activated and executed, which calculates
the value of Test_path of the redex. So, Fig. 13(b) can be obtained.

c

Name：5
Lab：AND

Rand_Weight：90
Final_Weight：90

Test_Path：

Name：6
Lab：S

Rand_Weight：110
Final_Weight：200

Test_Path：

Name：7
Lab：S

Rand_Weight：500
Final_Weight：590

Test_Path：

Name：8
Lab：S

Rand_Weight：410
Final_Weight：500

Test_Path：

Name：9
Lab：S

Rand_Weight：25
Final_Weight：115

Test_Path：

Name：10
Lab：AND

Rand_Weight：160
Final_Weight：275

Test_Path：

Name：11
Lab：S

Rand_Weight：260
Final_Weight：535

Test_Path：

Name：12
Lab：S

Rand_Weight：70
Final_Weight：345

Test_Path：

Name：13
Lab：AND

Rand_Weight：480
Final_Weight：1015

Test_Path：

Name：14
Lab：AND

Rand_Weight：305
Final_Weight：1320

Test_Path：

Name：15
Lab：T

Test_Path：

Name：16
Lab：XOR
Test_Path：

c

Name：1
Lab：T

Test_Path：

Name：2
Lab：T

Test_Path：

Name：3
Lab：XOR
Test_Path：

Name：4
Lab：S

Test_Path：

c

c

c

c

c

c

c

c

c

(a)

c

Name：5
Lab：AND

Rand_Weight：90
Final_Weight：90

Test_Path：

Name：6
Lab：S

Rand_Weight：110
Final_Weight：200

Test_Path：

Name：7
Lab：S

Rand_Weight：500
Final_Weight：590

Test_Path：

Name：8
Lab：S

Rand_Weight：410
Final_Weight：500

Test_Path：

Name：9
Lab：S

Rand_Weight：25
Final_Weight：115

Test_Path：

Name：13
Lab：S

Rand_Weight：
Final_Weight：1015

Test_Path：10→ 12→11→13

Name：14
Lab：AND

Rand_Weight：305
Final_Weight：1320

Test_Path：

Name：15
Lab：T

Test_Path：

Name：16
Lab：XOR
Test_Path：

c

Name：1
Lab：T

Test_Path：

Name：2
Lab：T

Test_Path：

Name：3
Lab：XOR
Test_Path：

Name：4
Lab：S

Test_Path：

c

c

c

c

c

c

(b)

Fig. 13. (a). An intermediate graph with 5
1C ; (b). An intermediate graph after using E-production 4

(2) The above process is repeatedly executed until all the concurrent modules are reduced

to the corresponding single node. And, the attribute Test_path of the corresponding single node
is calculated. So, Fig. 14 can be obtained.

c

Name：15
Lab：T

Test_Path：

Name：16
Lab：XOR
Test_Path：

c

Name：1
Lab：T

Test_Path：

Name：2
Lab：T

Test_Path：

Name：3
Lab：XOR
Test_Path：

Name：4
Lab：S

Test_Path：

Name：14
Lab：S

Rand_Weight：
Final_Weight：1320

Test_Path：5→ 9→ 6→ 10→ 12→ 8→
11→7→13→ 14

Fig. 14. An intermediate graph

Step 3.4, executing the graphStructureParsing() function without considering Con of the

E-productions to generate a test scenario. More detailed analysis processes are given below.

2490 Shi et al.: UML diagram-driven test scenarios generation based on the temporal graph grammar

(1) The function graphStructureParsing() first tries to search for all redexes without
considering Con of the E-productions given in Fig. 3. Obviously, E-production 2 and 3 are
satisfied and there are the redexes 7

1C , 7
2C , 7

3C , and 7
4C which is shown in Fig. 15(a). Then,

the redexes 7
1C , 7

2C , and 7
4C are replaced by R-application with E-production 2, while the

redex 7
3C are replaced with E-production 3. Its Fun is activated and executed, which

calculates the value of Test_path of the redexes. So, Fig. 15(b) can be obtained.

c

Name：15
Lab：T

Test_Path：

Name：16
Lab：XOR
Test_Path：

c

Name：1
Lab：T

Test_Path：

Name：2
Lab：T

Test_Path：

Name：3
Lab：XOR
Test_Path：

Name：4
Lab：S

Test_Path：

Name：14
Lab：S

Rand_Weight：
Final_Weight：1320

Test_Path：5→ 9→ 6→ 10→ 12→ 8→
11→7→13→ 14

(a)

Name：15
Lab：S

Test_Path：

Name：16
Lab：XOR
Test_Path：

Name：3
Lab：XOR
Test_Path：

Name：14
Lab：S

Rand_Weight：
Final_Weight：1320

Test_Path：4→ 5→ 9→ 6→ 10→ 12→ 8→
11→7→13→ 14

c

Name：1
Lab：S

Test_Path：

Name：2
Lab：S

Test_Path：

(b)
Fig. 15. (a). A graph with 7

1C , 7
2C , 7

3C , and 7
4C ; (b). A graph after using E-production 2 and 3

(2) The above process is repeatedly executed until a test scenario is generated. That is
1→2→3→4→5→9→6→10→12→8→11→7→13→14→15→16.

Step 3.5, determining whether the user constraints are met. If the user has no additional
constraints, the algorithm ends and the test scenario is obtained. If the user has additional
condition constraints, check whether the test scenario generated in Step 3.4 meets the
conditions. When the additional condition constraints are met, the algorithm ends; when the
additional condition constraints are not met, go to Step 3.2 and continue execution.

In Table 2, there are some test scenarios generated by the above steps. This table contains
three columns. The first column represents the ID number of the test scenario, the second
column represents user constraints, and the third column represents a generated test scenario.

Table 2. Test scenarios from the UAGG graph

Test Scenarios ID

TS-1

TS-2

TS-3

User Constraints

9，6，8，7

9，6，8，7

9，6，8，7

Generated Test Sequences

1→2→3→4→5→9→6→10→12→8→11→7→13→14→15→16

1→2→3→4→5→9→6→8→7→10→11→12→13→14→15→16

1→2→3→4→5→9→10→6→8→7→11→12→13→14→15→16

TS-4

TS-5

TS-6

9，7，6，8

9，7，6，8

9，7，6，8

1→2→3→4→5→9→10→11→12→13→7→6→8→14→15→16

1→2→3→4→5→9→7→10→11→12→13→6→8→14→15→16

1→2→3→4→5→9→10→11→12→7→13→6→8→14→15→16

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2491

5.2 Comparison with related work

Many researchers used UML diagrams to generate test scenarios in the literatures [38-42].
This section provides the comparison with these related works. Kundu et al.[38] presented an
approach of generating test cases from UML activity diagrams. They considered a test
coverage criterion, called activity path coverage criterion. Pechtanun et al.[39] proposed a
method with AC grammar to generate test cases from UML activity diagram. In addition, this
literature further illustrated the effectiveness of the method through four case studies. Patel et
al.[40] focused on two approaches to generate test cases form UML activity diagram. Jena et
al.[41] introduced a method to transform from a AFT generated by UML activity diagram to
AFG. Then, the test paths are generated by traversing the AFG. By building an IOAD, Mahali
et al.[42] presented an approach to generate a minimum test suite with maximum coverage.

Table 3 compares some related works, which illustrates the approach proposed in this paper
has several features. On the one hand, all test paths can be automatically generated through
this approach. On the other hand, this approach is able to check the structural correctness of
the UML activity diagrams.

Table 3. Comparison on the related work

Reference and Proposed work

[38]

[39]

[40]

[41]

Generation Algorithm Mechanism

DFS,BFS Manually

AC Grammar Automatically

Two approaches Automatically

DFS , Genetic Automatically

Structure Verification Coverage Criteria

No Activity path

No All paths

No Path,Activity path

No Path,Transition,
Decision

Case Study

Registration Cancellation

ATM withdrawing

Login system

ATM cash withdrawal
system

[42]

Proposed work

BFS Automatically

UAGG Automatically

No All paths

Yes All paths

Order system

Supermarket management
system

6. Conclusions

This paper proposes a new graph grammar UAGG to verify and analyze UML activity
diagrams based on the TEGG. In the UAGG, there are some new mechanisms which include
new E-productions and a parsing algorithm and so on. According to the designed productions
set, the algorithm proposed in this paper can not only verify the correctness of the UML
activity diagrams’ structure, but also automatically generate test scenarios that meet user
constraints. Finally, there is a specific case to explain how the proposed UAGG and its
mechanisms works.

Our future research goal is to extend the application of generating test cases by the UAGG
and develop the algorithms with a wider range of applications and higher efficiency.

Acknowledgement
This work is supported by the Natural Science Foundation of Jiangsu Province(CN) under
grant BK20181019, National Natural Science Foundation of China under grant 61802428, and
Science Foundation of Nanjing Institute of Technology under grant YKJ201723.

2492 Shi et al.: UML diagram-driven test scenarios generation based on the temporal graph grammar

References
[1] D. Park, H. Bang, C. S. Pyo and S. Kang, “Semantic open IoT service platform technology,” in

Proc. of IEEE World Forum on Internet of Things (WF-IoT), Seoul, Korea, pp. 85-88, March 2014.
Article (CrossRef Link).

[2] S. K. Vishwakarma, P. Upadhyaya, B. Kumari and A. K. Mishra, “Smart Energy Efficient Home
Automation System Using IoT,” in Proc. of the 4th International Conference on Internet of Things:
Smart Innovation and Usages (IoT-SIU), pp. 1-4, April 2019. Article (CrossRef Link)

[3] T. Jin, X. Yang, H. Xia and H. Ding, “Reliability index and option pricing formulas of the first
hitting time model based on the uncertain fractional-order differential equation with Caputo type,”
Fractals Complex Geometry, Patterns, and Scaling in Nature and Society, vol.29, no.1, January
2021. Article (CrossRef Link)

[4] T. Jin, H. Ding, H. Xia and J. Bao, “Reliability index and Asian barrier option pricing formulas of
the uncertain fractional first-hitting time model with Caputo type,” Chaos, Solitons & Fractals,
vol.142, January 2021. Article (CrossRef Link).

[5] D.C. Luckham and J. Vera, “An event-based architecture defifinition language,” IEEE
Transactions on Software Engineering, vol.21, pp. 717–734, September 1995.
Article (CrossRef Link).

[6] R. Allen and D. Garlan, “A formal basis for architectural connection,” ACM Transactions on
Software Engineering and Methodology, vol.6, no.3, pp.213–249, July 1997.
Article (CrossRef Link)

[7] G. Georg and S. Seidman, “The use of architecture description languages to describe a distributed
measurement system,” in Proc. of the 7th IEEE International Conference and Workshop on the
Engineering of Computer-Based Systems, Edinburgh, UK, April 2000. Article (CrossRef Link).

[8] D.Garlan, R.Monroe and D.Wile, “Acme: an architecture description interchange language,” in
Proc. of CASCON , 1997.

[9] M. Shaw, R. DeLine, D.V. Klein, T.L. Ross, D.M. Young and G. Zelesnik, “Abstractions for
software architecture and tools to support them,” IEEE Transactions on Software Engineering,
vol.21, no.4, pp. 314–335, April 1995. Article (CrossRef Link).

[10] S. Rigo, G. Araujo, M. Bartholomeu and R. Azevedo, “UML as an Architecture Description
Language,” in Proc. of the 16th Symposium on Computer Architecture and High Performance
Computing, Foz do Iguacu, Brazil, October 2004.

[11] B.Bharathi and D.Sridharan, “UML as an Architecture Description Language,” International
Journal of Recent Trends in Engineering, vol. 1, no. 2, pp.230-232, May 2009.

[12] B. Selic, S. Cook, E. Seidewitz and D. Tolbert, “OMG Unified Modeling Language(Version 2.5),”
Object Management Group, MA, USA, March 2015.

[13] D. Budgen, A. J. Burn, O. P. Brereton, B. A. Kitchenham and R. Pretorius, “Empirical evidence
about the UML: a systematic literature review,” Software Practice & Experience, vol. 41, no. 4,
pp. 363-392, April 2011. Article (CrossRef Link)

[14] N. Maneerat and W. Vatanawood, “Translation UML Activity Diagram into Colored Petri Net
with inscription,” in Proc. of the 13th International Joint Conference on Computer Science and
Software Engineering (JCSSE), Khon Kaen, Thailand, November 2016. Article (CrossRef Link)

[15] L. Baresi, A. C Morzenti, A. Motta and M. G Rossi, “A logic-based semantics for the verification
of multi-diagram UML models,” ACM SIGSOFT Software Engineering Notes, vol. 37, no.4, pp.
1-8, July 2012. Article (CrossRef Link)

[16] R. Eshuis, “Symbolic model checking of uml activity diagrams,” ACM Transactions on Software
Engineering and Methodology, vol. 15, no. 1, pp.1-38, January 2006. Article (CrossRef Link)

[17] H.Störrle, “Semantics of control-flow in UML 2.0 activities,” in Proc. of IEEE Symposium on
Visual Languages and Human-Centric Computing (VL/HCC), Rome, Italy, 2004.

[18] A.Heuer, V.Stricker, C.J. Budnik, S.Konrad, K.Lauenroth and K.Pohl, “Defining variability in
activity diagrams and Petri nets,” Science of Computer Programming, vol.78, no.12, pp. 2414-
2432, December 2013. Article (CrossRef Link)

http://doi.org/10.1109/WF-IoT.2014.6803125
http://doi.org/10.1109/IoT-SIU.2019.8777607
https://doi.org/10.1142/S0218348X21500122
https://doi.org/10.1016/j.chaos.2020.110409
http://doi.org/10.1109/32.464548
https://doi.org/10.1145/258077.258078
https://doi.org/10.1109/ECBS.2000.839876
https://doi.org/10.1109/32.385970
https://doi.org/10.1002/spe.1009
https://doi.org/10.1109/JCSSE.2016.7748883
https://doi.org/10.1145/2237796.2237811
https://doi.org/10.1145/1125808.1125809
https://doi.org/10.1016/j.scico.2012.06.003

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2493

[19] O. Tariq, J. Sang, K. Gulzar and H. Xiang, “Automated analysis of UML activity diagram using
CPNs,” in Proc. of the 8th IEEE International Conference on Software Engineering and Service
Science (ICSESS), Beijing, China, pp. 134-138, November 2017. Article (CrossRef Link)

[20] Yan Li and Li Jiang, “The research on test case generation technology of UML sequence diagram,”
in Proc. of the 9th International Conference on Computer Science & Education (ICCSE),
Vancouver, Canada, pp. 1067-1069, August 2014. Article (CrossRef Link)

[21] Z. A. Hamza and M. Hammad, “Generating Test Sequences from UML Use Case Diagram: A
Case Study,” in Proc. of the 2nd International Sustainability and Resilience Conference:
Technology and Innovation in Building Designs, pp. 1-6, November 2020. Article (CrossRef Link)

[22] M. A. Ali, K. Shaik and S. Kumar, “Test case generation using UML state diagram and OCL
expression,” International Journal of Computer Applications, vol. 95, no. 12, pp. 7–11, June 2014.
Article (CrossRef Link).

[23] V. Chimisliu and F. Wotawa, “Improving test case generation from UML statecharts by using
control, data and communication dependencies,” in Proc. of the 13th International Conference on
Quality Software, Najing, China, pp. 125–134, July 2013. Article (CrossRef Link).

[24] P. Gulia and R. S. Chillar, “A new approach to generate and optimize test cases for UML state
diagram using genetic algorithm,” ACM SIGSOFT Software Engineering Notes, vol. 37, no. 3, pp.
1–5, May 2012. Article (CrossRef Link)

[25] R. Swain, V. Panthi, P. K. Behera, and D. P. Mohapatra, “Automatic test case generation from
UML state chart diagram,” International Journal of Computer Applications, vol. 42, no. 7, pp. 26–
36, March 2012. Article (CrossRef Link)

[26] W. Deng, S. Shang, X. Cai, H. Zhao, Y. Song and J. Xu, “An improved differential evolution
algorithm and its application in optimization problem,” Soft Computing, vol. 25, pp. 5277–5298,
January 2021. Article (CrossRef Link)

[27] X. Cai, H. Zhao, S. Shang, Y. Zhou, W. Deng, H. Chen and W. Deng, “An improved quantum-
inspired cooperative co-evolution algorithm with muli-strategy and its application,” Expert
Systems with Applications, vol. 171, June 2021. Article (CrossRef Link)

[28] G. Rozenberg, Handbook of Graph Grammars and Computing by Graph Transformation,
Singapore: World Scientific Publishing Co., Inc. February 1997. Article (CrossRef Link)

[29] C. Ermel, M. Rudolf and G. Taentzer, “The AGG Approach: Language and Environment,”
Handbook of Graph Grammars and Computing by Graph Transformation, vol. 2, pp. 551–603,
January 1999. Article (CrossRef Link).

[30] J. Rekers and A. Schürr, “Defining and parsing visual languages with layered graph grammars,”
Journal of Visual Languages & Computing, vol. 8, no. 1, pp. 27–55, February 1997.
Article (CrossRef Link)

[31] D. Zhang, K. Zhang and J. Cao, “A context-sensitive graph grammar formalism for the
specification of visual languages,” The Computer Journal, vol. 44, no. 3, pp.186-200, January
2001. Article (CrossRef Link)

[32] X. Zeng, K. Zhang, J. Kong and G. Song, “RGG+: An enhancement to the reserved graph grammar
formalism,” in Proc. of IEEE Symposium on Visual Languages and Human-Centric
Computing(VL/HCC'05), Dallas, TX, USA, pp. 272-274, September 2005.
Article (CrossRef Link).

[33] G. Song and K. Zhang, “Visual XML schemas based on reserved graph grammars,” in Proc. of
the International Conference on Information Technology: Coding and Computing, vol.1, pp. 687-
691, April 2004. Article (CrossRef Link).

[34] K. Zhang, D. Zhang and J. Cao, “Design, construction, and application of a generic visual language
generation environment,” IEEE Transactions on Software Engineering, vol. 27, no. 4, pp. 289–
307, April 2001. Article (CrossRef Link)

[35] X. Zeng, X. Han and Y. Zou, “An edge-based context-sensitive graph grammar formalism,”
Journal of Software, vol. 19, no. 8, pp.1893-1901, 2008. Article (CrossRef Link).

[36] Z. Shi, X. Zeng, T. Zhang, S. Huang, Z. Qi, H. Li, B. Hu, Y. Yao and S. Zhong, “Bidirectional
transformation between BPMN and BPEL with graph grammar,” Computers & Electrical
Engineering, vol. 51, pp. 304-319, April 2016. Article (CrossRef Link)

https://doi.org/10.1109/ICSESS.2017.8342881
https://doi.org/10.1109/ICCSE.2014.6926626
https://doi.org/10.1109/IEEECONF51154.2020.9319979
http://doi.org/10.5120/16644-6614
https://doi.org/10.1109/QSIC.2013.48
http://doi.org/10.1145/2180921.2180933
https://doi.org/10.5120/5705-7756
https://doi.org/10.1007/s00500-020-05527-x
https://doi.org/10.1016/j.eswa.2021.114629
https://doi.org/10.1142/3303
https://doi.org/10.1142/9789812815149_0014
https://doi.org/10.1006/jvlc.1996.0027
https://doi.org/10.1093/comjnl/44.3.186
https://doi.org/10.1109/VLHCC.2005.56
https://doi.org/10.1109/ITCC.2004.1286546
https://doi.org/10.1109/32.917521
https://doi.org/10.3724/SP.J.1001.2008.01893
https://doi.org/10.1016/j.compeleceng.2015.12.027

2494 Shi et al.: UML diagram-driven test scenarios generation based on the temporal graph grammar

[37] Z. Shi, X. Zeng, Z. Yang, S. Huang, H. Li, B. Hu and Y. Yao, “A temporal graph grammar
formalism,” Journal of Visual Languages and Computing, vol. 47, pp.62-76, August 2018.
Article (CrossRef Link)

[38] D. Kundu and D. Samanta, “A Novel Approach to Generate Test Cases from UML Activity
Diagrams,” Journal of Object Technology, vol. 8, no.3, pp.65-83, May 2009.
Article (CrossRef Link)

[39] K. Pechtanun and S. Kansomkeat, “Generation test case from UML activity diagram based on AC
grammar,” in Proc. of the International Conference on Computer & Information Science (ICCIS),
Kuala Lumpur, Malaysia, pp. 895-899, June 2012. Article (CrossRef Link)

[40] P. E. Patel and N. N. Patil, “Testcases Formation Using UML Activity Diagram,” in Proc. of the
International Conference on Communication Systems and Network Technologies, Gwalior, pp.
884-889, April 2013. Article (CrossRef Link)

[41] A. K. Jena, S. K. Swain and D. P. Mohapatra, “A novel approach for test case generation from
UML activity diagram,” in Proc. of the International Conference on Issues and Challenges in
Intelligent Computing Techniques (ICICT), Ghaziabad, India, pp. 621-629, February 2014.
Article (CrossRef Link)

[42] P. Mahali, S. Arabinda, A. A. Acharya and D. P. Mohapatra, “Test case generation for concurrent
systems using UML activity diagram,” in Proc. of IEEE Region 10 Conference (TENCON),
Singapore, pp. 428-435, November 2016. Article (CrossRef Link).

https://doi.org/10.1016/j.jvlc.2018.06.003
https://doi.org/10.5381/jot.2009.8.3.a1
https://doi.org/10.1109/ICCISci.2012.6297153
https://doi.org/10.1109/CSNT.2013.191
https://doi.org/10.1109/ICICICT.2014.6781352
https://doi.org/10.1109/TENCON.2016.7848035

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021 2495

Zhan Shi received the Ph.D. and M.S. degree from Hohai University, and the B.S. degree
from ZhengZhou University, China. He currently is a lecturer and teacher of the Institute of
Computer Engineering, NanJing Institute of Technology. His research interests include
artificial intelligence, machine learning, graph grammars, and software test.

Xiaoqin Zeng received the Ph.D. degree from the Hong Kong Polytechnic University, the
M.S. degree from Southeast University, and the B.S. degree from Nanjing University, all in
Computer Science. He currently is a professor and Ph.D. student supervisor at Hohai
University, China. Prof. Zeng. as a principal investigator, has taken charge of several research
projects awarded by Natural Science Foundation of China. His current research interests
include Computational Intelligence, machine learning, pattern recognition, and graph
grammars.

Tingting Zhang is an associate professor of computer and military software engineering at
the Army Engineering University, Nanjing, China, where she received B.S. and M.S. degree
in computer science and information Technology in 2003 and 2007 respectively, and the Ph.D.
degree in Communication, in 2016. She is currently a post Ph.D. student at Southeast
University, and the 28th Research Institute of China Electronics Technology Group
Corporation. Sher major field of evolutionary computing, intelligent computing, swarm
unmanned system, software engineering, system and systems engineering, and system
engineering.

Lei Han received the B.S. and M.S.degrees computer science and technology from China
University of Mining andTechnology, China, in 2004 and 2007, respectively, and Ph.D.
degree in computerscience and technology from Hohai University, China, in 2018. From
March to September 2019, he has served as Visiting Scholar at University of Oulu,Finland.He
is now an associate professor at Nanjing Instituteof Technology, China since 2016. He was a
lecture and an assistant professor at Nanjing Institute of Technology from 2010 to 2016 and
from 2007 to 2010,respectively. His research interest includes computer vision, artificial
intelligence,computational imaging.

Ying Qian is a lecturer and teacher of Computer Engineering, Nanjing Institute of
Technology(NJIT), where she teaches and conducts research in the field of Software
Engineering and System Engineering. Her research interests include software engineering,
object detection, artificial intelligence, image classification.

