
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, Jul. 2021                                    2476 
Copyright ⓒ 2021 KSII 

 
http://doi.org/10.3837/tiis.2021.07.010                                                                                                                ISSN : 1976-7277 

UML diagram-driven test scenarios 
generation based on the temporal graph 

grammar 
 

Zhan Shi1*, Xiaoqin Zeng2, Tingting Zhang3,4, Lei Han1 and Ying Qian1 
1 Institute of Computer Engineering, NanJing Institute of Technology,Nanjing, China 

[e-mail:smomac@163.com] 
2 Institute of Intelligence Science and Technology, Hohai University,Nanjing, China 

[e-mail:xzeng@hhu.edu.cn] 
3 PLA Army Engineering University, Nanjing, China 

4 Southeast University, Nanjing, China 
*Corresponding author: Zhan Shi 

 
Received February 23, 2021; revised May 31, 2021; accepted June 24, 2021;  

published July 31, 2021 

 
Abstract 

 
Model-based software architecture verification and test scenarios generation are becoming 
more and more important in the software industry. Based on the existing temporal graph 
grammar, this paper proposes a new formalization method of the context-sensitive graph 
grammar for aiming at UML activity diagrams, which is called the UML Activity Graph 
Grammar, or UAGG. In the UAGG, there are new definitions and parsing algorithms. The 
proposed mechanisms are able to not only check the structural correctness of the UML activity 
diagram but also automatically generate the test scenario according to user constraints. Finally, 
a case study is discussed to illustrate how the UAGG and its algorithms work. 
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1. Introduction 

As the complexity and scale of software and hardware systems increase in many fields, such 
as the IoT(Internet of Things)[1-2], the finance[3-4] etc., the concurrency of these systems is 
becoming more and more important. It makes the software architecture essential for describing 
and testing the software system. There are multiple types of model views to describe the 
software architecture.  

At present, many Architecture Description Languages(ADLs) have been proposed[5-10]. 
Although the ADLs are specialized formal languages supporting modeling and reasoning on 
software architectures, their popularity and usage by practitioner is very low[11]. While, the 
Unified Modelling Language (UML) [12] is a common specification and the standard 
modeling language[13]. The UML activity diagram is one of UML standard models, which is 
very popular for describing software requirements and the dynamic behavior of the software 
systems[14].  

Since the formal method is the application of mathematical logic to describe the model of 
the software system, it has very high reliability and accuracy. Therefore, many studies use the 
method of a formal theorem to verify and check the correctness of UML activity diagrams[15-
16]. While, a number of researchers use Petri net method to describe and verify the UML 
activity diagram. Störrle[17] mapped various elements of the UML activity diagram into 
executable Petri nets. Heuer et al.[18] extended the dynamic syntax and semantics of the Petri 
net, and based on this Petri net, the activity diagram was formally described. Tariq et.al[19] 
proposed an approach for formal analysis and simulation of the UML behavioral models using 
Coloured Petri Nets(CPN). 

At the same time software testing is closely related to the software development process. 
Whether it is traditional software testing methods or automated software testing methods, 
generating test scenarios is one of the most critical issues. At present, many researchers have 
used UML modeling to represent the system and to test the software. Researchers have done 
a lot of research on test scenarios generation based on UML models. Yan et al.[20] proposed 
a test scenarios generation method based on UML sequence diagram models. In the literature 
[21], there is an approach to generate the test scenarios using UML use case diagrams. Among 
these studies [22]-[25], UML state diagrams are used, and algorithms for generating test 
scenarios are also proposed. In the process of generating test scenarios, it is also meaningful 
research how to use optimization methods[26-27] to improve efficiency. 

 In fact, with the wide application of visual graph languages such as UML, BPMN, and 
control flowcharts, etc., a framework for formal definition and analysis of visual languages 
plays an increasingly important role. Obviously, for this definition and analysis of visual 
languages, graph grammars[28] provide an intuitive but formal method. Just as string grammars 
are very important to string languages, graph grammars are also an indispensable theoretical 
tool for visual languages[29]. 

Nowadays, there are many research results on graphic grammar and its application. Rekers 
and Schürr[30] proposed a context-sensitive graph grammar in 1997. This graph grammar is 
called Layered Graph Grammar (LGG). Then, based on the LGG, Zhang et al.[31] proposed 
another context-sensitive graph grammar. This grammar is called Reserved Graph Grammar 
(RGG), which not only introduces a marking mechanism in the graph grammar to distinguish 
different edges, but also proposes selection conditions to restrict the production. The RGG's[32] 
application range is wider. There are Visual XML Schemas[33] and Generic Visual Language 
Generation Environments[34]. 
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Zeng et al.[35] proposed a context-sensitive Edge-based Graph Grammar (EGG). Based on 
the EGG, a new attempt of transformation between BPMN and BPEL[36] was provided. For 
traditional graphic grammars, although they can verify the correctness of the graph structure, 
they cannot analyze and process temporal semantics. However, graphs with temporal 
semantics are widely used in many fields. In order to expand the application range of the graph 
grammar, an attempt of introducing temporal mechanism into graph grammar was proposed. 
This new graph grammar was called Temporal Edge-based Graph Grammar (TEGG)[37]. So, 
we will extend the TEGG, make it more convenient to formally verify the UML activity 
diagram and further generate test scenarios.  

Based on the TEGG, this paper proposes a new context-sensitive graph grammar for UML 
activity diagrams, called UML Activity Graph Grammar or UAGG in short. In the UAGG, 
formal definitions are introduced for the characteristics of UML activity diagrams. Similarly, 
two types of productions are also provided. Then, new algorithms are designed to verify UML 
activity diagrams and generate test scenarios. Finally, there is a case study to explain how the 
proposed algorithms work. 

The rest of the paper is organized as follows. Firstly, Section 2 briefly introduces the basic 
concepts of the TEGG. Section 3 elaborates the formal definitions of the UAGG with the 
introduction of new mechanisms, such as an attribute set, new E-productions, and so on. Based 
on the UAGG, Section 4 provides steps and algorithms to realize the verification of UML 
activity diagrams and the generation of test scenarios. Section 5 illustrates a case study on a 
UML activity diagram. Finally, Section 6 concludes the whole paper. 

2. Preliminaries 
The TEGG mainly analyzes temporal semantics. In order to better understand the TEGG, the 
basic concepts are briefly introduced below. 
Definition 2.1 A node n based on a label set 

nL  can be denoted as ( , )n lab Natts≡ , and there 
are the following conditions: 

· 
nL  can be expressed as 

nL T T= U  . T  represents a label set of  
TN , and T  represents a label 

set of 
NN , while 

TN  represents a set of terminal nodes and 
NN  represents a set of non-terminal 

nodes; 
· 

nlab L∈ , representing the label of n; 
· Natts is a set of attributes owned by node n. 

Definition 2.2 An edge e based on a label set 
eL  can be denoted as ( , , , )s te lab n n Eatts≡ , and 

there are the following conditions: 
· eL  is a set of edge labels; 
· elab L∈ , representing the label of e; 
· 

sn  is a node defined in Definition 2.1, meaning the source node of e; 
· 

tn , is a node defined in Definition 2.1, representing the target node of e; 
· Eatts is a set of attributes owned by edge e, while Eatts Eka Eka= U . 
Usually, there are three graph operations. The first type of graph operation is called L-

application, also called deduction. The second one is called R-application, also called 
reduction. Then, the last one is called T-application. There is the literature [37] for more details 
about the TEGG. 
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3. Formalism of the UAGG based on the TEGG 
UML activity diagrams are mainly used to describe the workflow and concurrent behavior of 
the system and show the various sequential activities performed by all participants. Although 
activity diagrams have an intuitive and straightforward description, it cannot guarantee the 
correctness and reliability of the established model. It is more challenging to provide a useful 
basis for future software testing. In order to solve these problems, there are the formal 
definitions of the UAGG based on the TEGG. 
Definition 3.1 A node n based on a label set 

nL  can be denoted as 
( , , , , )n id name lab type Natts≡ , and there are the following conditions: 

· 
nL  and 

nlab L∈  are the same as those defined in Definition 2.1; 
· {0,1, 2,... }id k∈ , representing the identification of the node n to distinguish different nodes; 
·name, representing the name of the node n; 
·type, indicating which categories this node belongs to, while 

{ , , , , , , , , }type Initial Final Activity ComponentActivity Fork Join Branch Merge Object= . These values 
represent an initial activity node, a final activity node, a basic activity node, a component 
activity node, a concurrency fork node, a concurrency join node, a conditional fork node, a 
conditional join node and an object node in UML activity diagrams respectively; 

· Natts is a set of attributes owned by node n, which includes key temporal attributes and non-key 
attributes for UML activity diagrams. 

In order to show more vividly the node status corresponding to different values of the 
temporal attribute in a node, the following notations are used. In addition, each node also has 
non-key attributes, including Test_Path, Final_Weight, and Rand_Weight. The Test_Path 
attribute is mainly used to save the generated test path. The Final_Weight and Rand_Weight 
attributes are used to save the two weights of the node, which will be described in detail later. 

 

A node with 
waiting status

A node with 
completed status

S S

 
Fig. 1. Nodes with waiting and completed statuses 

 
Definition 3.2  An edge e based on a label set  

eL  can be denoted as 
( , , , , , , )s te id name lab type n n Eatts≡ , and there are the following conditions: 

· 
eL , elab L∈ , and  Eatts are the same as those defined in Definition 2.2; 

· {0,1, 2,... }id k∈ , representing the identification of the edge e to distinguish different edges; 
·name, representing the name of the edge e; 
· type, indicating which categories this edge belongs to, while { }type Controlflow= . The value 

represents a control edge in UML activity diagrams; 
· sn  and tn  are nodes defined in Definition 3.1, representing the source and target node of 

e respectively. 
Definition 3.3 A uml-activity graph UAG based on a label set L  can be denoted as 

( , , , , )UAG N E l p q≡ , , and there are the following conditions: 
·N is a set of nodes defined in Definition 3.1; 
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·E is a set of edges defined in Definition 3.2; 
· :l N E L→U  is a mapping from N and E to L, and  L can be expressed as 

n eL L L= U ; 
· :p E N→  and :q E N→  are mappings from E to N, indicating the source and target node 

of an edge. 
In the UAGG, the concepts of a sub-graph, two isomorphic graphs, redexes, a T-production, 

and the graph operations R-application and T-application are similar to the corresponding 
concepts of the TEGG. Then, the introduction of these concepts will not be repeated. For UML 
activity diagrams, the T-productions shown in Fig. 2. 

 
T -productions

B.

ProductionsNo. Con

{m+1,…,n}
*

{0,1,…,m}*

Fun

{m+1,…,n}
*

{0,1,…,m}*

C.
{m+1,…,n}

*
{m+1,…,n}

*

**

A.

D.
{0,1,…,m}*

{0,1,…,m}*

E.
{0,1,…,m}*

{0,1,…,m}*

* *

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

Final_Weight
Concurrent_path

{0,1,…,m}* {0,1,…,m}*

 
Fig. 2. A group of T-productions defined for the UML activity diagrams 

 
In order to check the structural correctness of UML activity diagrams and reduce concurrent 

processes in these diagrams, the concept of a new E-production in the UAGG is given as 
follows. 
Definition 3.4 An E-production 

Ep  is the expression L RUAG UAG⇔ , denoted as ( LUAG , RUAG , 
Con, Fun), where 

· LUAG  and RUAG  are uml-activity graphs with dangling edges; 
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· ( . . ) ( {0,1,2,...})L RUAG M UAG M M= ∧ ⊂ ; 
·Con is conditions which can be satisfied; 
·Fun is a group of functions that are executed when the Con can be satisfied and this 

production is used. 
According to the above definition, the E-productions for UML activity diagram analysis are 

shown in Fig. 3. 
 

E -productions

2.

ProductionsNo. Con Fun

4.

3.

1. 1 2S

1 2S 1 2T.x

11 2 2S SS S

11 2 2
T.and

S

S

S T.and

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

11 2 2
T.xor

S

S

S T.xor5.

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

11 2 2T.xor SS T.xor

co
ndFinal_Weight

Test_path

Final_Weight
Test_path

Final_Weight
Test_path

Final_Weight
Test_path

6.

 
Fig. 3. A group of E-productions defined for the UML activity diagrams 

4. A method of UML activity diagrams verification and test scenarios 
generation based on the UAGG 

4.1 Steps of UML activity diagrams verification and test scenarios generation 
In order to formally verify UML activity diagrams and further generate test scenarios, this 
section proposes an algorithm for this purpose based on the UAGG. The main steps of the 
algorithm are designed as follows, which not only check the structural aspect but also generate 
test scenarios of UML activity diagrams. The pseudo-codes of the algorithm are shown in Fig. 
4. 
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Graph parsing (UMLActivityDiagram g, Productions P, Constraints userConstraints)
{            
 1:             G←initialize( g );        
 2:             if(                                                    )
 3:                  {
 4:                         if ( graphStructureParsing( G, P.Eprodutions, FALSE  ) ==        )
 5:                                {
 6:                                       result = generateTestScenarios( G, P, userConstraints );
 7:                                      return result;
 8:                               }           
 9:                         else
 10:                                return NULL;
 11:                   }
}

Algorithm 1. Pseudo-codes for the parsing algorithm

 
Fig. 4. A new parsing algorithm 

 
Step 1, initializing. This step mainly transforms a given UML activity diagram g  into a host 

graph of the UAGG, which is done by the function initialize( UMLActivityDiagram g ).   
Step 2, verifying the structural correctness of the UAGG host graph. This step is mainly 

implemented by the function graphStructureParsing( ) which has three parameters. The first 
parameter represents the UAGG graph G, the second one represents the UAGG E-productions, 
and the last one indicates whether to enable the conditions of E-productions in Fig. 3. If the 
structure of G is correct, jump to step 3. Otherwise, return the NULL and end the algorithm. 
A further description of this function will be introduced in Section 4.2. 

Step 3, generating test scenarios with the UAGG. This step is mainly implemented by the 
function generateTestScenarios( ), which also has three parameters. The first parameter 
represents the UAGG grammar graph G, the second one represents the productions including 
E-productions and T-productions, and the last one represents the user constraints on the 
generation of test scenarios. A further description of this function will be introduced in Section 
4.3. 

4.2 Steps of UML activity diagrams’ structure verification 
A UAGG host graph of a UML activity model can be obtained through the first step in Section 
4.1. In the algorithm provided in Fig. 4, the function graphStructureParsing( ) completes the 
function similar to the traditional graph parsing algorithm. It is designed to check the given 
graph's structure correctness through R-applications with E-productions presented in Fig. 3. 
The pseudo-codes of the function graphStructureParsing( ) are provided in Fig. 5. 

The function graphStructureParsing( ) is to reduce the UAGG host graph g according to 
the E-productions ePros. When selecting the E-production, it will combine the parameter 
isCondition to determine whether to enable the conditions of this E-production in Fig. 3. 

In fact, the function findRedex (Graph g, Productions pros, Boolean isCondition) is mainly 
used to realize the process of finding redexes in the host graph g. If the parameter isCondition 
is true, then additional conditions of the productions need to be met when selecting and 
determining the production. And if the parameter is Condition is false, then there is no need to 
satisfy its conditions when selecting and determining the production additionally. 

There are two stacks GraphStack and ERedexStack in the function 
graphStructureParsing( ). The GraphStack is used to store graphs, while the ERedexStack is 
used to store corresponding redexes of the graphs respectively. 
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Alogrithm 2. Pseudo-codes for the function graphStructureParsing( )
Graph graphStructureParsing( Graph g, E-Productions ePros, Boolean isCondition  )
{ 
 1:          if(                                                          )
 2:                 {    
 3:                        while (    g !=       )
 4:                                 {
 5:                                       push( MARK, ERedexStack );
 6:                                       for all 
 7:                                                  {
 8:                                                        EredexSet = findRedex ( g, ePros, isCondition);
 9:                                                         for all 
 10:                                                              push( eredex, ERedexStack );
 11:                                                  }
 12:                                        eredex Θ  pop( ERedexStack );
 13:                                       while ( eredex == MARK )
 14:                                                  {
 15:                                                         g Θ  pop( GraphStack );
 16:                                                         eredex Θ  pop( ERedexStack );
 17:                                                         if ( eredex==NULL )
 18:                                                               {
 19:                                                                        if( isCondition== FALSE )
 20:                                                                               return NULL;
 21:                                                                        else
 22:                                                                              return g;
 23:                                                               }
 24:                                                   }
 25:                                        push ( g, GraphStack );
 26:                                        g = RApplication ( g, p, eredex );
 27:                              }
 28:                          return g;
 29:                  }
}  

Fig. 5. The function of graphStructureParsing( ) 

4.3 Steps of test scenarios generation 

There is a critical step to extract test scenarios from UML activity diagrams in test case 
generation. However, the concurrency modules in the activity diagram make the problem of 
extracting the basic test scenarios more complicated. The concurrency module of UML 
activity diagrams always starts at the concurrent fork node. It ends at the concurrent join node, 
which meets the characteristic of a single node as input or output. 

Therefore, based on the UAGG, this paper proposes the algorithm  generateTestScenarios( ) 
which will analyze the UAGG host graph according to the constraint conditions of the 
productions and users to generate the test scenarios. The specific steps of the algorithm are as 
follows: 

Step 1, making pretreatment for a given graph of the UAGG. Firstly, the primary 
implementation is to find all the concurrent modules in the UAGG host graph and then assign 
an initial value to the state of the first concurrent fork node of each outermost concurrent 
module.  

Step 2, assign a random value to the Rand_Weight attribute of each node in each concurrent 
module. Then, for all concurrent modules, use the graphTemporalParsing( ) function with T-
productions, T-applications and other operations to calculate the Final_Weight attribute value 
of each node. Thus, the intermediate graph is generated. 

Step 3, further using E-productions to reduce the intermediate graph generated above until 
all the concurrent modules are reduced to the corresponding single node. 

Step 4, further executing the graphStructureParsing( ) function with E-productions to 
generate a test scenario. 

Step 5, determining whether the user constraints are met. If the user has no additional 
constraints, this algorithm ends and the test scenario is obtained. If the user has additional 
condition constraints, check whether the test scenario generated in Step 4 meets the conditions. 
When the conditions are met, the algorithm ends. When the conditions are not met, go to Step 
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2 and continue execution. 
The above process can be expressed with pseudo-codes, as shown in the following figure. 

 

generateTestScenarios( Graph g, Productions ps, Constraints userConstraints)
{            
 1:                Boolean isCycle=TRUE; 
 2:                 finalTestScen=NULL;
 3:                  if(  g !=NULL && ps != NULL )
 4:                     {
 5:                           List allConcurrentModel = findAllConcurrentModel( g );
 6:                           if( allConcurrentModel != NULL )                    
 7:                                  {
 8:                                        g = initializeFirstNode( g, allConcurrentModel );
 9:                                       while( isCycle )
 10:                                              {
 11:                                                   gra = initializeRandWeightOfNode( g, allConcurrentModel );  
 12:                                                   gra = graphTemporalParsing( gra, ps );
 13:                                                  gra = graphStructureParsing( gra, ps.Eproductions, 1 );
 14:                                                  basicTestScen = graphStructureParsing( gra, ps.Eproductions, 0 );
 15:                                                  if( isSatisfyConstraints( basicTestScen, userConstraints ) == FALSE )
 16:                                                            {
 17:                                                                     isCycle=TRUE;
 18:                                                             }
 19:                                                  else
 20:                                                            { 
 21:                                                                    isCycle=FALSE ;
 22:                                                                    finalTestScen = basicTestScen;
 23:                                                            }                                                 
 24:                                               }
 25:                                   }           
 26:                            else
 27:                                  {                                
 28:                                         finalTestScen = graphStructureParsing( gra, ps.Eproductions, 0 );
 29:                                   }
 30:                              return finalTestScen ;
 31:                      }
}

Alogrithm 3. Pseudo-codes for generating test scenario

 
Fig. 6. The function of generateTestScenarios( ) 

4.4 Computational complexity 

The computational complexity of the algorithm in Fig. 4 is a critical issue. While, it is analyzed 
in this section. 
Theorem 4.1. For a given UML activity diagram, the time complexity of the algorithm in Fig. 
4 is 2 2( 2 ( ) ( !) )

!
m n n mpsO ps n n n

m
⋅⋅ + ⋅ ⋅ ⋅ , where n is the numbers of nodes in a host graph of the 

UAGG, ps is the number of productions, and m is the maximum number of nodes among all 
productions’ right graphs. 
Proof. Assuming 1k , 2k , and 3k  are time complexity of functions initialize( ), 
graphStructureParsing( ), and generateTestScenarios( ) respectively. According to the 
algorithm steps, its time complexity k  can be calculated by the following equation: 

1 2 3k k k k= + +  
    It is sure that the complexity of the function initialize( ) is O(n). In addition, for the function 
graphStructureParsing( ), assuming 1l  is the maximal iterations number of the lines 3–27, 2l  
is that of the lines 6-11, 3l  is that of the lines 9-10, and 4l  is that of the lines 13-24. Then, 
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assuming 4k  and 5k  are the time complexities of the function findRedex( ) and RApplication( ) 
respectively. So, the complexity of function graphStructureParsing( ) is as follows[37]: 
 

2 1 2 4 3 4 5( ( ( ) ))

(( ) ( !) )
!

n n m

k O l l k l l k
psO n n
m

= ⋅ ⋅ + + +

= ⋅ ⋅
 

For the function generateTestScenarios( ), assuming 5l  is the maximal iterations number of 

the lines 9 – 24, 6k , 7k , 8k , and 9k  are the time complexities of the function 
findAllConcurrentModel( ), initializeFirstNode( ), initializeRandWeightOfNode( ) and 
graphTemporalParsing( ) respectively. In order to find all concurrent subgraphs, it is 
necessary to traverse all nodes in the UAGG graph. Therefore, the time complexity of 
findAllConcurrentModel( ) is O(n+e), while e represents the edges in the UAGG host graph. 
The function initializeFirstNode( ) is used to initialize the first node of the concurrent module, 
so 7 ( )k O n e≤ + . Similarly, 8 ( )k O n e≤ + . For the function graphTemporalParsing( ), there 

is 2 2 1
9 ( )mk O ps n ⋅ +≤ ⋅  according to the reference [37]. Obviously, for the obtained test 

scenario containing n nodes, the time complexity of the function isSatisfyConstraints( ) is O(n), 
while 2

5 ( 1)l n n n n≤ ⋅ − = − . So, the complexity of the function generateTestScenarios( ) is: 
3 6 7 5 8 9 2

2 2

( ( 2 ))

( ( ) ( !) )
!

m n n m

k O k k l k k k n
psO ps n n n
m

⋅

= + + ⋅ + + ⋅ +

= ⋅ + ⋅ ⋅
 

Combined with the above discussion, the time complexity of the algorithm is the 
following: 

1 2 3

2 2( 2 ( ) ( !) )
!

m n n m

k k k k
psO ps n n n
m

⋅

= + +

= ⋅ + ⋅ ⋅ ⋅
 

5. Case study and Comparison with related work 
This section introduces a process model built by UML activity diagrams, and illustrates how 
this model is verified and test scenarios are generated using the steps presented in Section 4.1. 

5.1 Case study 

Fig. 7 shows the process of adding product information to the supermarket management 
system after the administrator logs in. There are ten activity nodes and six gateway nodes. 
Besides, this process includes two concurrent models. 

Shopkeeper login 
e-commerce 
management 
system

Verify 
account And 
password

Add new a 
kind of 
goods

Add goods 
name

Add goods 
price

Add goods 
stock

Select goods 
type

Select 
goods brand

Add goods 
specifications

submit

Fork 1

Branch 1 Merge 1

Fork 2 Join 1, 
Join 2  

Fig. 7. A business process described by the UML activity diagram 
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According to the algorithm introduced in Section 4.1, it can analyze this diagram as follows. 
Step 1, executing the first steps, namely initialization. Through this step, we can get  the 

host UAGG graph g shown in Fig. 8.  
 

Name：1
Type：Activity

Lab：T

Name：2
Type：Activity

Lab：T

Name：3
Type：Branch

Lab：XOR

Name：6
Type：Activity

Lab：T

Name：4
Type：Activity

Lab：T

Name：7
Type：Activity

Lab：T

Name：9
Type：Activity

Lab：T

Name：8
Type：Activity

Lab：T

Name：15
Type：Activity

Lab：T

Name：5
Type：Fork
Lab：AND

Name：10
Type：Fork
Lab：AND

Name：11
Type：Activity

Lab：T

Name：12
Type：Activity

Lab：T

Name：13
Type：Join
Lab：AND

Name：14
Type：Join
Lab：AND

Name：16
Type：Merge
Lab：XOR

 
Fig. 8. A UAGG host graph g is corresponding to Fig. 7. 

 
The graph g describes the node name with numbers given to each activity. The two columns 

in the following table are Activity Name and Node Name respectively. The Activity Name 
represents the name of the activity in Fig. 7, and the Node Name indicates the node in the 
graph g corresponding to the activity. 

 
Table 1. The UAGG graph of adding product information activity diagram 

Activity Name Node Name
Shopkeeper login e-commerce

management system 1

Verify account and passsword 2

Branch 1 3

Add a new kind of goods 4

Activity Name Node Name

Fork 1 5

Add goods name 6

Add goods price 7

Add goods stock 8

Activity Name Node Name

Select goods type 9

Fork 2 10

Select goods brand 11

Add goods specifications 12

Activity Name Node Name

Join 1 13

Join 2 14

Submit 15

Merge 1 16      
 
Step 2, this step is the process of structural analysis of the above host graph. That is to verify 
whether the structure is correct by executing the function graphStructureParsing( ) based on 
E-productions. If the host graph's structure is correct, jump to Step 3. Otherwise, return the 
error message and end the algorithm. 

Step 3, this step is to generate test scenarios. It involves several processes described in 
Section 4.3, so we can further introduce this step as follows. 

Step 3.1, making pretreatment for a given graph of the UAGG. Firstly, there are two 
concurrent modules in the graph g founded by the function findAllConcurrentModel (Graph 
g ). The first fork node of the outermost concurrent module of these two modules is marked 
by the red dotted line box in Fig. 9, noted as Node 5. Then, assign an initial value to the state 
of the Node 5. 

Step 3.2, assigning a random value to the Rand_Weight attribute of each node in these two 
concurrent models, and assigning the value of the Rand_weight attribute in the Node 5 to its 
Final_weight attribute as shown in Fig. 9. Then, for all concurrent models in this graph, use 
the graphTemporalParsing( ) function with T-productions, T-applications and other 
operations to calculate the Final_Weight attribute value of each node. So, the intermediate 
graph is generated. 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 7, July 2021                                      2487 

In the following content, j
iC  will be used to represent each redex, where j represents the 

number of the intermediate graph containing the redex, and i represents the number of the 
corresponding redex. 

 

c

Name：5
Lab：AND

Rand_Weight：90
Final_Weight：90

Name：6
Lab：T

Rand_Weight：110
Final_Weight：

Name：7
Lab：T

Rand_Weight：500
Final_Weight：

Name：8
Lab：T

Rand_Weight：410
Final_Weight：

Name：9
Lab：T

Rand_Weight：25
Final_Weight：

Name：10
Lab：AND

Rand_Weight：160
Final_Weight：

Name：11
Lab：T

Rand_Weight：260
Final_Weight：

Name：12
Lab：T

Rand_Weight：70
Final_Weight：

Name：13
Lab：AND

Rand_Weight：480
Final_Weight：

Name：14
Lab：AND

Rand_Weight：305
Final_Weight：

Name：15
Lab：T

Name：16
Lab：XOR

c

Name：1
Lab：T

Name：2
Lab：T

Name：3
Lab：XOR

Name：4
Lab：T

Fig. 9. An intermediate graph 
 

 Firstly, the function graphTemporalParsing( ) will search for all redexes in the host graph 
according to the T-productions given in Fig. 2. In this process, because the condition of T-
production A is met, the redex 1

1C  will be selected in Fig. 9 and replaced by T-application 
with the T-production A. At the same time, the Fun function of the T-production A will also 
be executed. So, Fig. 10 can be obtained. 

 

c

Name：5
Lab：AND

Rand_Weight：90
Final_Weight：90

Name：6
Lab：T

Rand_Weight：110
Final_Weight：

Name：7
Lab：T

Rand_Weight：500
Final_Weight：

Name：8
Lab：T

Rand_Weight：410
Final_Weight：

Name：9
Lab：T

Rand_Weight：25
Final_Weight：

Name：10
Lab：AND

Rand_Weight：160
Final_Weight：

Name：11
Lab：T

Rand_Weight：260
Final_Weight：

Name：12
Lab：T

Rand_Weight：70
Final_Weight：

Name：13
Lab：AND

Rand_Weight：480
Final_Weight：

Name：14
Lab：AND

Rand_Weight：305
Final_Weight：

Name：15
Lab：T

Name：16
Lab：XOR

c

Name：1
Lab：T

Name：2
Lab：T

Name：3
Lab：XOR

Name：4
Lab：T

 
Fig. 10. An intermediate graph after using T-production A 

 
Secondly, the function continues to search for redexes based on Fig. 10. Since conditions 

of the T-production B are satisfied, the redexes 2
1C , 2

2C , 2
3C , and 2

4C  are selected and 
replaced by T-application with the T-production B. Then, its Fun function is activated and 



2488                                     Shi et al.: UML diagram-driven test scenarios generation based on the temporal graph grammar 

executed, which calculates the value of Final_weight of these redexes. Therefore, the 
Final_Weight attribute value of Node 6, 7, 8, and 9 is equal to the final_weight attribute value 
of Node 5 plus the Rand_weight attribute value of these nodes themselves respectively. So, 
Fig. 11 can be obtained. 

 

c

Name：5
Lab：AND

Rand_Weight：90
Final_Weight：90

Name：6
Lab：T

Rand_Weight：110
Final_Weight：200

Name：7
Lab：T

Rand_Weight：500
Final_Weight：590

Name：8
Lab：T

Rand_Weight：410
Final_Weight：500

Name：9
Lab：T

Rand_Weight：25
Final_Weight：115

Name：10
Lab：AND

Rand_Weight：160
Final_Weight：

Name：11
Lab：T

Rand_Weight：260
Final_Weight：

Name：12
Lab：T

Rand_Weight：70
Final_Weight：

Name：13
Lab：AND

Rand_Weight：480
Final_Weight：

Name：14
Lab：AND

Rand_Weight：305
Final_Weight：

Name：15
Lab：T

Name：16
Lab：XOR

c

Name：1
Lab：T

Name：2
Lab：T

Name：3
Lab：XOR

Name：4
Lab：T

c

c

c

c

 
Fig. 11. An intermediate graph after using T-production B 

 
Then, the above process is repeatedly executed until the attribute Final_Weight of all nodes 

in the concurrent modules of the graph can be calculated. So, Fig. 12 can be obtained. 
 

c

Name：5
Lab：AND

Rand_Weight：90
Final_Weight：90

Name：6
Lab：T

Rand_Weight：110
Final_Weight：200

Name：7
Lab：T

Rand_Weight：500
Final_Weight：590

Name：8
Lab：T

Rand_Weight：410
Final_Weight：500

Name：9
Lab：T

Rand_Weight：25
Final_Weight：115

Name：10
Lab：AND

Rand_Weight：160
Final_Weight：275

Name：11
Lab：T

Rand_Weight：260
Final_Weight：535

Name：12
Lab：T

Rand_Weight：70
Final_Weight：345

Name：13
Lab：AND

Rand_Weight：480
Final_Weight：1015

Name：14
Lab：AND

Rand_Weight：305
Final_Weight：1320

Name：15
Lab：T

Name：16
Lab：XOR

c

Name：1
Lab：T

Name：2
Lab：T

Name：3
Lab：XOR

Name：4
Lab：T

c

c

c

c

c

c

c

c

c

 
Fig. 12. An intermediate graph 

 
Step 3.3, in this step the main realization uses E-productions to reduce the intermediate 

graph generated in the above Step 3.2, until the concurrent modules are reduced to a single 
node. More detailed analysis processes are given below. 

 (1) The function graphStructureParsing( ) first tries to search for all redexes in Fig. 12 
with the E-productions given in Fig. 3. Considering Con of the E-production 2, it can be used 
to perform R-application operations, so that the value of nodes’ Lab in the concurrent modules 
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can be changed from “T” to “S”. Then, Fig. 13(a) can be obtained. 
    Considering Con of the E-production 4, the redex 5

1C  is selected and replaced by R-
application, which is shown in Fig. 13(a). Its Fun is activated and executed, which calculates 
the value of Test_path of the redex. So, Fig. 13(b) can be obtained. 
 

c

Name：5
Lab：AND

Rand_Weight：90
Final_Weight：90

Test_Path：

Name：6
Lab：S

Rand_Weight：110
Final_Weight：200

Test_Path：

Name：7
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Rand_Weight：500
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Test_Path：

Name：8
Lab：S

Rand_Weight：410
Final_Weight：500

Test_Path：

Name：9
Lab：S

Rand_Weight：25
Final_Weight：115

Test_Path：

Name：10
Lab：AND

Rand_Weight：160
Final_Weight：275

Test_Path：

Name：11
Lab：S

Rand_Weight：260
Final_Weight：535

Test_Path：

Name：12
Lab：S

Rand_Weight：70
Final_Weight：345

Test_Path：

Name：13
Lab：AND

Rand_Weight：480
Final_Weight：1015

Test_Path：

Name：14
Lab：AND

Rand_Weight：305
Final_Weight：1320

Test_Path：

Name：15
Lab：T

Test_Path：

Name：16
Lab：XOR
Test_Path：

c

Name：1
Lab：T

Test_Path：

Name：2
Lab：T

Test_Path：

Name：3
Lab：XOR
Test_Path：

Name：4
Lab：S

Test_Path：

c

c

c

c

c

c

c

c

c

 
(a) 

c

Name：5
Lab：AND

Rand_Weight：90
Final_Weight：90

Test_Path：

Name：6
Lab：S

Rand_Weight：110
Final_Weight：200

Test_Path：

Name：7
Lab：S

Rand_Weight：500
Final_Weight：590

Test_Path：

Name：8
Lab：S

Rand_Weight：410
Final_Weight：500

Test_Path：

Name：9
Lab：S

Rand_Weight：25
Final_Weight：115

Test_Path：

Name：13
Lab：S

Rand_Weight：
Final_Weight：1015

Test_Path：10→ 12→11→13

Name：14
Lab：AND

Rand_Weight：305
Final_Weight：1320

Test_Path：

Name：15
Lab：T

Test_Path：

Name：16
Lab：XOR
Test_Path：

c

Name：1
Lab：T

Test_Path：

Name：2
Lab：T

Test_Path：

Name：3
Lab：XOR
Test_Path：

Name：4
Lab：S

Test_Path：

c

c

c

c

c

c

 
(b) 

Fig. 13. (a). An intermediate graph with 5
1C ; (b). An intermediate graph after using E-production 4 

 
(2) The above process is repeatedly executed until all the concurrent modules are reduced 

to the corresponding single node. And, the attribute Test_path of the corresponding single node 
is calculated. So, Fig. 14 can be obtained. 

 

c

Name：15
Lab：T

Test_Path：

Name：16
Lab：XOR
Test_Path：

c

Name：1
Lab：T

Test_Path：

Name：2
Lab：T

Test_Path：

Name：3
Lab：XOR
Test_Path：

Name：4
Lab：S

Test_Path：

Name：14
Lab：S

Rand_Weight：
Final_Weight：1320

Test_Path：5→ 9→ 6→ 10→ 12→ 8→ 
11→7→13→ 14

 
Fig. 14. An intermediate graph 

 
Step 3.4, executing the graphStructureParsing( ) function without considering Con of the 

E-productions to generate a test scenario. More detailed analysis processes are given below.  
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(1) The function graphStructureParsing( ) first tries to search for all redexes without 
considering Con of the E-productions given in Fig. 3. Obviously, E-production 2 and 3 are 
satisfied and there are the redexes 7

1C , 7
2C , 7

3C , and 7
4C  which is shown in Fig. 15(a). Then, 

the redexes 7
1C , 7

2C , and 7
4C  are replaced by R-application with E-production 2, while the 

redex 7
3C  are replaced with E-production 3. Its Fun is activated and executed, which 

calculates the value of Test_path of the redexes. So, Fig. 15(b) can be obtained. 
 

c

Name：15
Lab：T

Test_Path：

Name：16
Lab：XOR
Test_Path：

c

Name：1
Lab：T

Test_Path：

Name：2
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Test_Path：

Name：3
Lab：XOR
Test_Path：

Name：4
Lab：S

Test_Path：

Name：14
Lab：S

Rand_Weight：
Final_Weight：1320

Test_Path：5→ 9→ 6→ 10→ 12→ 8→ 
11→7→13→ 14

 
(a) 

Name：15
Lab：S

Test_Path：

Name：16
Lab：XOR
Test_Path：

Name：3
Lab：XOR
Test_Path：

Name：14
Lab：S

Rand_Weight：
Final_Weight：1320

Test_Path：4→ 5→ 9→ 6→ 10→ 12→ 8→ 
11→7→13→ 14

c

Name：1
Lab：S

Test_Path：

Name：2
Lab：S

Test_Path：

 
 

(b)  
Fig. 15. (a). A graph with 7

1C , 7
2C , 7

3C , and 7
4C ; (b). A graph after using E-production 2 and 3 
 

(2) The above process is repeatedly executed until a test scenario is generated. That is  
1→2→3→4→5→9→6→10→12→8→11→7→13→14→15→16. 

Step 3.5, determining whether the user constraints are met. If the user has no additional 
constraints, the algorithm ends and the test scenario is obtained. If the user has additional 
condition constraints, check whether the test scenario generated in Step 3.4 meets the 
conditions. When the additional condition constraints are met, the algorithm ends; when the 
additional condition constraints are not met, go to Step 3.2 and continue execution. 

In Table 2, there are some test scenarios generated by the above steps. This table contains 
three columns. The first column represents the ID number of the test scenario, the second 
column represents user constraints, and the third column represents a generated test scenario. 

 
Table 2. Test scenarios from the UAGG graph 

Test Scenarios ID

TS-1

TS-2

TS-3

User Constraints

9，6，8，7

9，6，8，7

9，6，8，7

Generated Test Sequences

1→2→3→4→5→9→6→10→12→8→11→7→13→14→15→16

1→2→3→4→5→9→6→8→7→10→11→12→13→14→15→16

1→2→3→4→5→9→10→6→8→7→11→12→13→14→15→16

TS-4

TS-5

TS-6

9，7，6，8

9，7，6，8

9，7，6，8

1→2→3→4→5→9→10→11→12→13→7→6→8→14→15→16

1→2→3→4→5→9→7→10→11→12→13→6→8→14→15→16

1→2→3→4→5→9→10→11→12→7→13→6→8→14→15→16
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5.2 Comparison with related work 

Many researchers used UML diagrams to generate test scenarios in the literatures [38-42]. 
This section provides the comparison with these related works. Kundu et al.[38] presented an 
approach of generating test cases from UML activity diagrams. They considered a test 
coverage criterion, called activity path coverage criterion. Pechtanun et al.[39] proposed a 
method with AC grammar to generate test cases from UML activity diagram. In addition, this 
literature further illustrated the effectiveness of the method through four case studies. Patel et 
al.[40] focused on two approaches to generate test cases form UML activity diagram. Jena et 
al.[41] introduced a method to transform from a AFT generated by UML activity diagram to 
AFG. Then, the test paths are generated by traversing the AFG. By building an IOAD, Mahali 
et al.[42] presented an approach to generate a minimum test suite with maximum coverage. 

Table 3 compares some related works, which illustrates the approach proposed in this paper 
has several features. On the one hand, all test paths can be automatically generated through 
this approach. On the other hand, this approach is able to check the structural correctness of 
the UML activity diagrams. 

 
Table 3. Comparison on the related work 

Reference and Proposed work

[38]

[39]

[40]

[41]

Generation Algorithm Mechanism

DFS,BFS Manually

AC Grammar Automatically

Two approaches Automatically

DFS , Genetic Automatically

Structure Verification Coverage Criteria

No Activity path

No All paths

No Path,Activity path

No Path,Transition, 
Decision

Case Study

Registration Cancellation

ATM withdrawing

Login system

ATM cash withdrawal 
system

[42]

Proposed work

BFS Automatically

UAGG Automatically

No All paths

Yes All paths

Order system

Supermarket management 
system  

6. Conclusions 

This paper proposes a new graph grammar UAGG to verify and analyze UML activity 
diagrams based on the TEGG. In the UAGG, there are some new mechanisms which include 
new E-productions and a parsing algorithm and so on. According to the designed productions 
set, the algorithm proposed in this paper can not only verify the correctness of the UML 
activity diagrams’ structure, but also automatically generate test scenarios that meet user 
constraints. Finally, there is a specific case to explain how the proposed UAGG and its 
mechanisms works. 

Our future research goal is to extend the application of generating test cases by the UAGG 
and develop the algorithms with a wider range of applications and higher efficiency. 
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